Mechanism of RNA double helix-propagation at atomic resolution.
نویسندگان
چکیده
The conversion of a nucleic acid from single strands to double strands is thought to involve slow nucleation followed by fast double-strand propagation. Here, for RNA double-strand propagation, we propose an atomic resolution reaction mechanism. This mechanism, called the stack-ratchet, is based on data-mining of three-dimensional structures and on available thermodynamic information. The stack-ratchet mechanism extends and adds detail to the classic zipper model proposed by Porschke (Porschke, D. Biophysical Chemistry 1974, 2, pp. 97-101). Porschke's zipper model describes the addition of a base pair to a nucleated helix in terms of a single type of elementary reaction; a concerted process in which the two bases, one from each strand, participate in the transition state. In the stack-ratchet mechanism proposed here a net base-pairing step consists of two elementary reactions. Motions of only one strand are required to achieve a given transition state. One elementary reaction preorganizes and stacks the 3' single-strand, driven by base--base stacking interactions. A second elementary reaction stacks the 5' strand and pairs it with the preorganized 3' strand. In the stack-ratchet mechanism, a variable length 3' stack leads the single-strand/double-strand junction. The stack-ratchet mechanism is not a two-state process. A base can be (i) unstacked and unpaired, (ii) stacked and paired, or (ii) stacked and unpaired (only on the 3' strand). The data suggests that helices of DNA and of RNA do not propagate by similar mechanisms.
منابع مشابه
Formation of the double helix: a mutational study
To investigate the mechanisms by which oligonucleotides hybridize to target molecules, the binding of two oligodeoxynucleotide probes to RNA targets was measured over a broad range of temperatures. Mutations were then scanned across each DNA/RNA hybrid to map, at single base resolution, sequences important for hybridization. Despite being unrelated in sequence, each hybrid formed by a similar m...
متن کاملA novel form of RNA double helix based on G·U and C·A+ wobble base pairing.
Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and f...
متن کاملA crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3',5'-cytidine.
The sodium salt of guanylyl-3',5'-cytidine crystallizes in a monoclinic unit cell with one molecule in the asymmetric unit. Each molecule is related to another molecule by a 2-fold rotation axis which results in the formation of an antiparallel, right-handed double helix with complementary hydrogen bonding between the guanine and cytosine residues. The crystal is heavily hydrated with 36 water ...
متن کاملAtomic resolution duplex structure of the simplified nucleic acid GNA.
Double helix variations of glycol nucleic acids (GNA) are revealed by the atomic resolution crystal structure of a 6mer GNA duplex containing solely Watson-Crick type hydrogen-bonded base pairs.
متن کاملStructure of an RNA polymerase II preinitiation complex.
The structure of a 33-protein, 1.5-MDa RNA polymerase II preinitiation complex (PIC) was determined by cryo-EM and image processing at a resolution of 6-11 Å. Atomic structures of over 50% of the mass were fitted into the electron density map in a manner consistent with protein-protein cross-links previously identified by mass spectrometry. The resulting model of the PIC confirmed the main conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 9 شماره
صفحات -
تاریخ انتشار 2009